Synthesis and characterization of aluminum complexes of 2-pyrazol-1-yl-ethenolate ligands

Zhong-Xia Wang *, Die Yang
Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China

Received 18 March 2005; accepted 27 May 2005
Available online 19 July 2005

Abstract

The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O) $\mathrm{CH}_{2}-3,5-\mathrm{R}_{2} \mathrm{C}_{3} \mathrm{HN}_{2}\left(\mathbf{1 a}, \mathrm{R}=\mathrm{Me} ; \mathbf{1 b}, \mathrm{R}=\mathrm{Bu}^{t}\right)$, were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with $\mathrm{PhC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Br}$. Reaction of $\mathbf{1 a}$ or $\mathbf{1 b}$ with $\operatorname{AlR}_{3}^{1}\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{Et}\right)$ yielded N, O-chelate alkylaluminum complexes $\left[\mathrm{R}_{2}^{1} \mathrm{AlOC}(\mathrm{Ph}) \mathrm{CH}\left\{\left(3,5-\mathrm{R}_{2} \mathrm{C}_{3} \mathrm{H} \mathrm{N}_{2}\right)-1\right\}\right]\left(\mathbf{2 a}, \mathrm{R}=\mathrm{R}^{1}=\mathrm{Me}\right.$; $\mathbf{2 b}$, $\left.\mathrm{R}=\mathrm{Bu}^{t}, \mathrm{R}^{1}=\mathrm{Me} ; \mathbf{2 c}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{Et}\right)$. Compound $\mathbf{1 a}$ was readily lithiated with LiBu^{n} in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl_{2} or AlCl_{3} yielded five-coordinated aluminum complexes $[\mathrm{XAl}(\mathrm{OC}(\mathrm{Ph}) \mathrm{CH}\{(3,5-$ $\left.\left.\left.\left.\mathrm{Me}_{2} \mathrm{C}_{3} \mathrm{HN}_{2}\right)-1\right\}\right)_{2}\right](\mathbf{4}, \mathrm{X}=\mathrm{Me} ; \mathbf{5}, \mathrm{X}=\mathrm{Cl})$. Reaction of $\mathbf{5}$ with an equiv of LiHBEt_{3} generated $\left[\mathrm{Al}\left(\mathrm{OC}(\mathrm{Ph}) \mathrm{CH}\left\{\left(3,5-\mathrm{Me}_{2} \mathrm{C}_{3} \mathrm{HN}_{2}\right)-\right.\right.\right.$ $1\})_{3}$ ($\mathbf{6}$). Complex $\mathbf{6}$ was also obtained by reaction of $\mathbf{3}$ with $1 / 3$ equiv of AlCl_{3}. Treatment of $\mathbf{5}$ with 2 equiv of AlMe_{3} yielded complex $\mathbf{2 a}$, whereas with an equiv of AlMe_{3} afforded a mixture of $\mathbf{2 a}$ and $\left[\mathrm{Me}(\mathrm{Cl}) \mathrm{AlOC}(\mathrm{Ph}) \mathrm{CH}\left\{\left(3,5-\mathrm{Me}_{2} \mathrm{C}_{3} \mathrm{HN} \mathrm{N}_{2}\right)-1\right\}\right]$ (7). Compounds 1a, 1b, 2a-2c and $4 \mathbf{6}$ were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for $\mathbf{2 a}$ or a distorted trigonal bipyramid for 5 .

© 2005 Elsevier B.V. All rights reserved.
Keywords: 2-Pyrazol-1-yl-ethenolate ligands; Aluminum complexes; Synthesis; Structures

1. Introduction

Organoaluminum compounds have attracted much attention in recent years due to their use as catalysts or co-catalysts for olefin polymerization [1,2], as initiators in ROP of cyclic esters [3] and as synthetic reagents or catalysts [4]. These compounds also exhibited interesting structure features and versatile reactivities [5]. N, O-Chelate ligands have been widely used in main group and transition metal coordination chemistry. For example, nickel complexes with N, O -

[^0]chelate ligands have been investigated as catalysts for olefin polymerization [1a,6]. Aluminum complexes with N, O-ligands also showed versatile coordination mode and unique applications [7]. For example, tris(8-quinolinolato)aluminum is one of the most widely used complexes for organic light emitting devices (OLED) [8]. A series of N, O-chelate aluminum complexes such as ketiminate and SALEN aluminum complexes exhibited excellent catalytic activity toward the ring opening polymerization of cyclic esters [7f,9]. N, O-Bidentate ligands were also found to be able to stabilize cationic monoalkylaluminum species [10]. Here we report synthesis and characterization of aluminum complexes stabilized by 2-pyrazol-1-yl-ethenolate ligands.

2. Results and discussion

Preparation and reactions of 2-(3,5-disubstituted pyrazol-1-yl)-1-phenylethanones are summerized in Scheme 1.

A mixture of 3,5-dimethylpyrazole, $\mathrm{PhC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Br}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in a motar was ground with a pestle for 20 min to give 2-(3,5-dimethylpyrazol-1-yl)-1-phenylethanone (1a). Similar treatment of 3,5-di-tert-butylpyrazole and $\mathrm{PhC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Br}$ in the persence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ formed a mixture of 2-(3,5-di-tert-butylpyrazol-1-yl)-1phenylethanone (1b) and starting materials. However, the reaction can reach almost completeness under microwave radiation conditions. The minor unreacted starting materials were removed at $80^{\circ} \mathrm{C}$ under vacuum. Both $\mathbf{1 a}$ and $\mathbf{1 b}$ reacted readily with AlMe_{3} or AlEt_{3} in a 1:1 molar ratio, giving four-coordinated N, O-chelate alkylaluminum complexes $\mathbf{2 a - 2 c}$. The reactions proceed along with the elimination of an equivalent of methane or ethane. However, reaction of $\mathbf{1 a}$ or $\mathbf{1 b}$ with trimethylaluminum in a $2: 1$ molar ratio can not form bis(2-pyra-zol-1-yl-ethenolate) aluminum complexes, only $\mathbf{2 a}$ or $\mathbf{2 b}$ being obtained. Compound 1a was readily lithiated with $\mathrm{LiBu}{ }^{n}$ in thf or toluene from about $-80^{\circ} \mathrm{C}$ to room temperature to give lithiated species, supposing 3. Treatment of 3 with 0.5 equiv of MeAlCl_{2} prepared [11] in situ from AlMe_{3} and AlCl_{3} in toluene generated five-

2a $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{Me}$ 2b $\mathrm{R}=\mathrm{Bu}^{t}, \mathrm{R}^{1}=\mathrm{Me}$
 2c $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{Et}$

$\mathrm{R}=\mathrm{Me}$ or Bu^{t}

2a

Scheme 1. Reagents and conditions: i, $\mathrm{PhC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Br}$, grinding $(\mathrm{R}=\mathrm{Me})$ or MW radiation $\left(\mathrm{R}=\mathrm{Bu}^{t}\right)$; ii, $\mathrm{AlR}_{3}^{1}\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{Et}\right)$, toluene, r.t., 15 h.; iii, LiBu^{n}, thf or toluene, $-80^{\circ} \mathrm{C}$-r.t., $6 \mathrm{~h} . ;$ iv, $1 / 2 \mathrm{MeAlCl}_{2}$, toluene, $-80^{\circ} \mathrm{C}$-r.t., $15 \mathrm{~h} . ; \mathrm{v}, 1 / 2 \mathrm{AlCl}_{3}$, thf, $-80^{\circ} \mathrm{C}$-r.t., 15 h .; vi, LiHBEt_{3}, thf, $-80^{\circ} \mathrm{C}-$ r.t., $15 \mathrm{~h} . ;$ vii, $1 / 3 \mathrm{AlCl}_{3}$, thf, $-80^{\circ} \mathrm{C}$-r.t., 15 h ; viii, 1 or 2 equiv. of AlMe_{3}, toluene, r.t., 15 h .
coordinated aluminum complex 4. Similar reaction between 3 and 0.5 equiv of AlCl_{3} afforded another five-coordinated aluminum complex 5. Attempts to methylate 5 by treatment with MeLi were unsuccessful. The reaction produced a complicated mixture. Treatment of complex 5 with an equiv of LiHBEt_{3} in thf afforded complex 6. The reaction could proceed via a hydride intermediate I, which transformed into 6 via a dismutation reaction. The other product of the dismutation reaction may be AlH_{3} because no other complexes can be isolated. Complex 6 was also obtained by reaction of 3 with $1 / 3$ equiv of AlCl_{3}. Reaction of 5 with an equiv of AlMe_{3} gave a mixture of $\mathbf{2 a}$ and 7. Similar reaction between 5 and 2 equiv of AlMe_{3} afforded complex 2a. These are attributed to a redistribution of ligands and then the methylation of 7 with AlMe_{3}. Ligand redistributions often occur between aluminum complexes. A number of examples have been reported in the literature [11-13]. In addition, attempts to prepare complex 7 by reaction of $\mathbf{3}$ with an equiv of MeAlCl_{2} were unsuccessful. The reaction gave a complicated mixture.

Compounds $\mathbf{1 a}$ and $\mathbf{1 b}$ were characterized by elemental analyses, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR spectroscopy. Each of complexes 2a-2c and 4-6 was characterized by elemental analyses, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. The NMR spectra of complexes $\mathbf{4}$ and 5 showed that two 2-pyra-zol-1-yl- ethenolate ligands are equivalent in the respective molecule. Complex 6 is six-coordinated in the solid state shown by single crystal X-ray diffraction (see 6a). However, its ${ }^{1} \mathrm{H}$ NMR spectrum exhibited two sets of ligand signals in a 2:1 integral ratio, showing that two of the ligands have same coordination environment. Its ${ }^{27} \mathrm{Al}$ NMR spectrum ($\delta 60 \mathrm{ppm}$) supported a five-coordinated aluminum center [14]. Hence we assume that in the solution it exists as structure $\mathbf{6 b}$.

6a

6b

The structures of complexes $\mathbf{2 a}$ and $\mathbf{5}$ were further characterized by single crystal X-ray diffraction. The structure of $\mathbf{2}$ is presented in Fig. 1 along with selected bond lengths and angles. Crystalline 2a is monomeric. The fused six-membered ring AllN1N2C6C7O1 is coplanar with the pyrazolato moiety as well as the phenyl ring. The geometry at the aluminum atom is a distorted tetrahedron with angles ranging from $94.81(13)^{\circ}$ to $114.9(2)^{\circ}$. The most acute angle is associated with the bite angle of the chelate ligand, which is close to corresponding those in $\left[\mathrm{Et}_{2} \mathrm{Al}\{\mathrm{OC}(\mathrm{Me}) \mathrm{CHC}(\mathrm{Me}) \mathrm{N}\right.$ -$\left.\left.\left(2,6-\mathrm{Pr}_{2}^{i} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right\}\right]\left[94.56(9)^{\circ}\right][13]$ and $\left[\mathrm{Et}_{2} \mathrm{Al}\left\{\mathrm{Sal}\left(\mathrm{Bu}^{t}\right)\right\}\right]$ [94.97(6) ${ }^{\circ}$ [[14]. The All-N1 distance of $1.940(3) \AA$ is a little shorter than those found in $\left[\mathrm{R}_{2} \mathrm{Al}\{\mathrm{OC}(\mathrm{Me}) \mathrm{CHC}\right.$ (Me) $\left.\left.\mathrm{N}\left(2,6-\mathrm{Pr}_{2}^{i} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right\}\right] \quad(\mathrm{R}=\mathrm{Me}, 1.954(6) \mathrm{A} ; \mathrm{R}=\mathrm{Et}$, $1.958(2) \AA)[15]$ and in $\left[\mathrm{Et}_{2} \mathrm{Al}\left\{\mathrm{Sal}\left(\mathrm{Bu}^{t}\right)\right\}\right](1.976(2) \AA)$ [16]. The All-O1 distance of 1.747 (3) \AA is also shorter than corresponding those in $\left[\mathrm{Me}_{2} \mathrm{Al}\{\mathrm{OC}(\mathrm{Me}) \mathrm{CHC}-\right.$ (Me) $\left.\left.\mathrm{N}\left(2,6-\mathrm{Pr}_{2}^{i} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right\}\right]$ and $\left[\mathrm{Et}_{2} \mathrm{Al}\left\{\mathrm{Sal}\left(\mathrm{Bu}^{i}\right)\right\}\right]$ (1.795(5) and 1.772 (1) A, respectively). However, The distances of All-N1 and All-O1 are still within the normal ranges for a four-coordinated alkyl aluminum complex [10b, 17]. The C6-C7 distance of $1.327(5) \AA$ shows a double bond between the atoms.

The structure of 5 is presented in Fig. 2 along with selected bond lengths and angles. Complex $\mathbf{5}$ is monomeric in the solid state and the aluminum atom is five-coordinated. The coordination geometry is a distorted trigonal bypyramid with N 1 and N 3 atoms in axial positions and $\mathrm{Cl1}, \mathrm{O} 1$ and O 2 atoms in equatorial positions. The Cl1, $\mathrm{O} 1, \mathrm{O} 2$ and All atoms are coplanar, the total angles of the trigonal plane being 360°. The N1-Al1-N3 angle of $176.68(8)^{\circ}$ shows that the arrange of the atoms is close

Fig. 1. ORTEP drawing of complex $\mathbf{2 a}$ with 30% probability thermal ellipsoids. All hydrogen atoms have be omitted for clarity. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$: All-C14 1.948(3), All-O1 1.747(3), Al1-N1 1.940(3), C7-O1 1.322(4), C6-C7 1.327(5), C6-N2 1.419(4); N1-All-O1 94.81(13), O1-Al1-C14 112.54(12), C14-AllC14' 114.9(2), N1-Al1-C14 110.16(12), C7-O1-All 130.9(2), N2-N1All 122.6(2), N2-C6-C7 125.6(3).
to linear. The bite angles N1-All-O1 and N3-Al1-O2 ($90.30(8)^{\circ}$ and $90.89(8)$, respectively) are narrower than that in 2a, but wider than those in $[\mathrm{RAl}\{\mathrm{OC}(\mathrm{Me})$ $\left.\left.\mathrm{CHC}(\mathrm{Me}) \mathrm{N}\left(2,6-\mathrm{Pr}_{2}^{i} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right\}_{2}\right]\left(\mathrm{R}=\mathrm{Me}\right.$, Et. av. 87.58° and 87.43°, respectively) [15]. The Al-N distance of average 2.0317 A is normal for a five-coordinated aluminum complex with N, O-chelate ligands. For example, the $\mathrm{Al}-\mathrm{N}$ distances in $[\operatorname{RAl}\{\mathrm{OC}(\mathrm{Me}) \mathrm{CHC}(\mathrm{Me}) \mathrm{N}-$ $\left.\left.\left(2,6-\mathrm{Pr}_{2}^{i} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right\}_{2}\right] \quad(\mathrm{R}=\mathrm{Cl}, \quad \mathrm{Me}, \quad \mathrm{Et})$ range from 2.021 (12) to $2.0678(17) \AA[15]$. The Al-O distance of average $1.7463 \AA$ is close to that in 2a, but shorter than in the five-coordinated complexes $[\mathrm{RAl}\{\mathrm{OC}(\mathrm{Me})$ $\left.\left.\mathrm{CHC}(\mathrm{Me}) \mathrm{N}\left(2,6-\operatorname{Pr}_{2}^{i} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right\}_{2}\right](\mathrm{R}=\mathrm{Cl}, \mathrm{Me}, \mathrm{Et})$, which ranging between $1.799(9)$ and $1.8202(16) \AA$.

The structure of complex 6 was also determined by single crystal X-ray diffraction, but the data quality is poor due to the crystal quality. However, the structure has been solved and proves that the central aluminum atom is six-coordinated in the solid state as shown in 6a. This coordination mode is different from that in the solution proved by ${ }^{1} \mathrm{H}$ and ${ }^{27} \mathrm{Al}$ NMR spectroscopy.

3. Experimental

3.1. General methods

All experiments were performed under nitrogen using standard Schlenk and vacuum line techniques. Solvents were distilled under nitrogen over sodium (toluene),

Fig. 2. ORTEP drawing of complex $\mathbf{5}$ with 30% probability thermal ellipsoids. All hydrogen atoms have be omitted for clarity. Selected bond lengths (A) and bond angles $\left({ }^{\circ}\right)$: All-Cl1 2.1816(9), All-O1 1.7468(16), Al1-N1 2.0347(18), Al1-O2 1.7459(16), All-N3 2.0287(19), O1-C7 1.333(3), O2-C20 1.328(2), C6-C7 1.331(3), C19C20 1.331(3), C6-N2 1.393(3), C19-N4 1.403(3); C11-Al1-O1 118.82(7), Cl1-Al1-O2 117.53(7), Cl1-Al1-N1 91.95(6), Cl1-Al1-N3 91.36(6), N1-All-N3 176.67(8), N1-All-O1 90.30(8), N1-All-O2 87.91(8), N3-All-O1 87.79(8), N3-All-O2 90.89(8), O1-All-O2 123.65(9).
sodium-benzophenone (thf, $\mathrm{Et}_{2} \mathrm{O}$ and n-hexane) or $\mathrm{CaH}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and degassed prior to use. $\mathrm{C}_{6} \mathrm{D}_{6}$ were purchased from Acros Organics and stored over Na / K alloy and degassed prior to use. CDCl_{3} was purchased from Acros Organics and stored over $4 \AA$ molecular sieve. $\mathrm{AlMe}_{3}, \mathrm{AlEt}_{3}, \mathrm{LiBu}^{n}$ and LiHBEt_{3} were purchased from Alfa Acesar and used as received. 3,5Disubstituted pyrazoles were prepared according to the literature [18]. NMR spectra were recorded on a Bruker av300 spectrometer at ambient temperature. The chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are referenced to internal solvent resonances and the ${ }^{27} \mathrm{Al}$ NMR spectra are referenced to external AlCl_{3} in $\mathrm{D}_{2} \mathrm{O}$. IR spectra were determined on a Bruker VECTOR-22 spectrometer. Elemental analyses were performed by the Analytical Center of University of Science and Technology of China.

3.2. Synthesis of 1-PhC(O)CH2-3,5-Me $\mathrm{CH}_{2} \mathrm{HN}_{2}$ (1a)

A mixture of 3,5-dimethylpyrazole ($3.84 \mathrm{~g}, 40 \mathrm{mmol}$), $\mathrm{PhC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Br}(7.96 \mathrm{~g}, 40 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.12 \mathrm{~g}$, 20 mmol) in a motar was ground using a pestle for 20 min . The mixture was set aside for 4 h . The resulted solid was washed with water and dried in air to give 1a $\cdot \mathrm{H}_{2} \mathrm{O}(6.51 \mathrm{~g}, 70 \%)$, m.p. $80-84^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 67.22 ; \mathrm{H}, 6.94 ; \mathrm{N}, 12.06$. Found: C, $67.02 ; \mathrm{H}, 7.14 ; \mathrm{N}, 12.03 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.75$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}$), $2.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 5.45$ (s, 2H, CH2), $5.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.48-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$, 7.59-7.63 (m, 1H, Ph), 7.96-7.99 (m, 2H, Ph). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.14,13.61,55.45,106.02,128.27$, 129.06, 134.07, 134.88, 140.69, 148.51, 192.90. IR (KBr disc): $v_{\mathrm{C}=\mathrm{O}} 1689 \mathrm{~cm}^{-1}$. 1a can be obtained by heating 1a $\cdot \mathrm{H}_{2} \mathrm{O}$ under vacuum.

3.3. Synthesis of 1-PhC(O)CH2 $\mathrm{CH}_{2}-5-\mathrm{Bu}_{2}^{t} \mathrm{C}_{3} \mathrm{HN}_{2}$ (1b)

A mixture of 3,5-di-tert-butylpyrazole $(1.29 \mathrm{~g}$, $7.17 \mathrm{mmol}), \mathrm{PhC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Br}(1.43 \mathrm{~g}, 7.18 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.38 \mathrm{~g}, 3.58 \mathrm{mmol})$ was radiated using microwave (80 W) for 15 min . The mixture was added water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ether layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated to give 1b with minor starting materials. The mixture was heated at $80^{\circ} \mathrm{C}$ under vacuum for 1 h and then recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give colorless crystals of $\mathbf{1 b}(1.66 \mathrm{~g}$, 78%), m.p. $143-144{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$: C, 76.47; H, 8.78; N, 9.39. Found: C, 76.65; H, 8.98; $\mathrm{N}, 9.54 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.21\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{t}\right)$, $1.22\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{t}\right), 5.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.88(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ph}), 7.85-7.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 30.41,30.70,31.38,32.05,57.95,100.82,128.12$, $128.93,133.75,135.21,152.21,160.85,193.75$. IR: $v_{\mathrm{C}=\mathrm{O}}$ $1699 \mathrm{~cm}^{-1}$.

3.4. Synthesis of $\left[\mathrm{Me}_{2} \mathrm{AlOC}(\mathrm{Ph}) \mathrm{CH}\left\{\left(3,5-\mathrm{Me}_{2}{ }^{-}\right.\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{HN}_{2}\right)-1\right\}$] (2a)

A solution of $\mathbf{1 a}(0.306 \mathrm{~g}, 1.43 \mathrm{mmol})$ in toluene $(10 \mathrm{ml})$ was cooled to about $-80^{\circ} \mathrm{C}$. To the solution was added $\mathrm{AlMe}_{3}(2.3 \mathrm{M}$ solution in hexane, 0.65 ml , 1.49 mmol) with stirring. The mixture was stirred overnight at room temperature and the resulted solution was filtered. Concentration of the filtrate afforded colorless crystals of $2 \mathrm{a}(0.213 \mathrm{~g}, 55 \%)$, m.p. $160-162^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OAl}: \mathrm{C}, 66.65 ; \mathrm{H}, 7.08 ; \mathrm{N}, 10.36$. Found: C, 66.48; H, 7.12; N, 10.29\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{AlMe}_{2}\right), 1.47(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.10$ (s, 3H, Me), $5.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.25-$ $7.35(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.96-7.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-8.90,10.42,12.32,96.76,106.35,125.78$, 128.53, 128.67, 138.66, 139.06, 146.31, 149.57.

3.5. Synthesis of $\left[\mathrm{Me}_{2} \mathrm{AlOC}(\mathrm{Ph}) \mathrm{CH}\left\{\left(3,5-\mathrm{Bu}_{2}^{\mathrm{t}}{ }^{-}\right.\right.\right.$ $\left.\left.C_{3} H N_{2}\right)-1\right\} /(2 b)$

$\mathbf{2 b}$ was prepared using a similar method to that for 2a. Reaction of $\mathbf{1 b}(0.262 \mathrm{~g}, 0.88 \mathrm{mmol})$ with AlMe_{3} (2.3 M solution in hexane, $0.40 \mathrm{ml}, 0.92 \mathrm{mmol}$) in toluene (10 ml) gave colorless crystals of $\mathbf{2 b}(0.21 \mathrm{~g}, 68 \%)$, m.p. $144-148{ }^{\circ} \mathrm{C}$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OAl}$: C, 71.16; H , 8.81; N, 7.90. Found: C, $70.74 ; \mathrm{H}, 8.80 ; \mathrm{N}, 7.79 \% .{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.10\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{AlMe}_{2}\right), 1.11\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{t}\right)$, $1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{t}\right), 6.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 7.22-7.34 (m, 3H, Ph), 8.06-8.09 (m, 2H, Ph). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.42,28.94,30.98,31.69,32.62$, 100.62, 102.77, 125.76, 128.17, 128.71, 128.88, 138.44, $150.09,152.36,161.33$.

3.6. Synthesis of $\left[E t_{2} \mathrm{AlOC}(\mathrm{Ph}) \mathrm{CH}\left\{\left(2,4-\mathrm{Me}_{2}-\right.\right.\right.$ $\left.\left.\left.C_{3} H N_{2}\right)-1\right\}\right](2 c)$

$\mathbf{2 c}$ was prepared using a similar method to that for $\mathbf{2 a}$. Reaction of $1 \mathrm{a}(0.307 \mathrm{~g}, 1.43 \mathrm{mmol})$ with $\mathrm{AlEt}_{3}(1.8 \mathrm{M}$ solution in hexane, $1.5 \mathrm{ml}, 2.70 \mathrm{mmol}$) in toluene $(10 \mathrm{ml})$ gave colorless crystals of $\mathbf{2 c}(0.136 \mathrm{~g}, 32 \%)$, m.p. $102-104{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OAl}$: C, 68.44; H, 7.77; N, 9.39. Found: C, 68.54; H, 7.46; N, 9.54%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.48-0.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AlCH}_{2}\right)$, $1.49(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.50(\mathrm{t}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Me}), 2.14(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}), 5.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.24$ $7.35(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.96-7.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta \quad 0.99,9.50,10.48,12.25,96.76,106.34$, $125.72,128.55,128.69,138.62,139.37,146.48,149.92$.
3.7. Synthesis of $\left[\mathrm{Me} \mathrm{Al}\left(\mathrm{OC}(\mathrm{Ph}) \mathrm{CH}\left\{\left(2,4-\mathrm{Me}_{2} \mathrm{C}_{3} \mathrm{HN}_{2}\right)\right.\right.\right.$ -
1\}) $\left.\cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right]\left(\mathbf{4} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right)$ $\left.1\})_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right]\left(4 \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right)$

To a suspension of $\mathrm{AlCl}_{3}(0.123 \mathrm{~g}, 0.92 \mathrm{mmol})$ in toluene (10 ml) was added $\mathrm{AlMe}_{3}(2.3 \mathrm{M}$ solution in hexane, $0.20 \mathrm{ml}, 0.46 \mathrm{mmol}$) at room temperature with
stirring. After stirring for 4 h , the solution was cooled to about $-80^{\circ} \mathrm{C}$ and a solution of $[\mathrm{LiOC}(\mathrm{Ph}) \mathrm{CH}\{(3,5-$ $\mathrm{Me}_{2} \mathrm{C}_{3} \mathrm{HN}_{2}$)-1\}] prepared from 1a ($0.59 \mathrm{~g}, 2.76 \mathrm{mmol}$) and LiBu^{n} (2.89 M solution in hexane, 0.95 ml , 2.76 mmol) in toluene was added. The mixture was warmed to room temperature and stirred overnight. The solution was filtered and the filtrate was concentrated to generate pale yellow crystalline $4 \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$ $(0.306 \mathrm{~g}, 40 \%)$, m.p. $190-192{ }^{\circ} \mathrm{C}$. Calc. for $\mathrm{C}_{34} \mathrm{H}_{37^{-}}$ $\mathrm{N}_{4} \mathrm{O}_{2} \mathrm{Al}$: C, 72.84 ; H, 6.65; N, 9.99. Found: C, 72.87; $\mathrm{H}, 6.45 ; \mathrm{N}, 9.88 \%{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 0.04$ (s, 3H, Me), $1.66(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.20(3 \mathrm{H}, \mathrm{PhMe}), 2.68(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me})$, $5.66(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 6.52(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 7.10-7.36(\mathrm{~m}, 11 \mathrm{H}$, Ph), 7.90-7.94 (m, 4H, Ph). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 10.60$, 14.41, 21.42, 97.80, 106.41, 125.64, 125.70, 126.64, $127.85,128.56,129.34,136.38,137.90,140.01,146.97$, 147.70.

3.8. Synthesis of $\left[\mathrm{ClAl}\left(\mathrm{OC}(\mathrm{Ph}) \mathrm{CH}\left\{\left(2,4-\mathrm{Me}_{2}{ }^{-}\right.\right.\right.\right.$ $\left.\left.\left.\left.C_{3} H N_{2}\right)-1\right\}\right)_{2}\right]$ (5)

$\mathrm{LiBu}^{n} \quad(2.89 \mathrm{M}$ solution in hexane, 0.97 ml , $2.80 \mathrm{mmol})$ was added to a solution of $\mathbf{1 a}(0.60 \mathrm{~g}$, $2.80 \mathrm{mmol})$ in thf $(10 \mathrm{ml})$ at about $-80^{\circ} \mathrm{C}$ with stirring. After stirring for 4 h at room temperature, the solution was recooled to about $-80^{\circ} \mathrm{C}$ and $\mathrm{AlCl}_{3}(0.187 \mathrm{~g}$, 1.40 mmol) was added. The mixture was warmed to room temperature and stirred overnight. Volatiles were removed in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was filtered and the filtrate was concentrated to about 1 ml . Several drops of $\mathrm{Et}_{2} \mathrm{O}$ was added to form colorless crystals of $5(0.50 \mathrm{~g}, 73 \%)$, m.p. $218-221^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{ClAl}$: C, 63.68; H, 5.36; N, 11.46. Found: C, 63.72; H, 5.41; N, 11.65%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.31(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.46$ (s, 6H, Me), $5.97(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 6.63(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 7.18-$ $7.26(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 7.54-7.57(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.62,14.87,98.10,107.36,125.13,128.01$, 128.27, 129.22, 137.03, 138.27, 146.46, 148.33.

3.9. Synthesis of $\left[\mathrm{Al}\left(\mathrm{OC}(\mathrm{Ph}) \mathrm{CH}\left\{\left(3,5-\mathrm{Me}_{2}-\right.\right.\right.\right.$ $\left.\left.\left.\left.\mathrm{C}_{3} \mathrm{HN}_{2}\right)-1\right\}\right)_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right]\left(6 \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right)$

To a stirred solution of $5(0.143 \mathrm{~g}, 0.29 \mathrm{mmol})$ in thf $(10 \mathrm{ml})$ was added $\mathrm{LiHBEt}_{3}(1 \mathrm{M}$ solution in thf, $0.29 \mathrm{ml}, 0.29 \mathrm{mmol}$) at about $-80^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred overnight. Solvents were removed and the residue was dissolved in toluene. The solution was filtered and the filtrate was concentrated to give colorless crystals of complex $6 \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}(0.088 \mathrm{~g}, 59 \%)$, m.p. $194-196^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{46} \mathrm{H}_{47} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Al}$: $\mathrm{C}, 72.80 ; \mathrm{H}, 6.24 ; \mathrm{N}, 11.07$. Found: C, 72.67; H, 6.28; N, 10.98\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.63-1.72(\mathrm{~b}, 6 \mathrm{H}, \mathrm{Me}), 1.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.17$ (s, 6H, Me), $2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MePh}), 2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, $5.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.66(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$,
7.09-7.23 (m, 7H, Ph + CH), $7.25(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph}), 7.33(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}), 7.87-7.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 8.01(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 10.91,13.03$, 14.21, 14.34, 21.42, 96.11, 98.21, 105.59, 106.95, 125.54, 125.70, 125.90, 127.37, 127.57, 127.91, 128.57, $129.34,135.95,136.35,137.25,137.90,139.29,141.69$, 146.24, 148.12, $150.79,151.42 .{ }^{27} \mathrm{Al}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 60$.

Complex 6 was also obtained by reaction between lithiated $1 \mathbf{1 a}$ and AlCl_{3}. Compound 1a ($0.642 \mathrm{~g}, 3 \mathrm{mmol}$) was lithiated by reaction with $\mathrm{LiBu}^{n}(2.89 \mathrm{M}$ in hexane, $1.04 \mathrm{ml}, 3 \mathrm{mmol}$) in thf. The solution was cooled to about $-80^{\circ} \mathrm{C}$ and $\mathrm{AlCl}_{3}(0.133 \mathrm{~g}, 1 \mathrm{mmol})$ was added. The mixture was warmed to room temperature and stirred overnight. Solvents were removed in vacuo and the residue was extracted with toluene. The mixture was filtered and the filtrate concentrated to afford colorless crystalline complex $\mathbf{6} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}(0.559 \mathrm{~g}$, 74%).

3.10. Reaction of complex 5 with AlMe_{3}

To a solution of complex $5(0.446 \mathrm{~g}, 0.91 \mathrm{mmol})$ in toluene $(10 \mathrm{ml})$ was added $\mathrm{AlMe}_{3}(2.3 \mathrm{M}$ solution in hexane, $0.83 \mathrm{ml}, 1.82 \mathrm{mmol}$) at room temperature with stirring. The mixture was stirred for 12 h and then

Table 1
Details of the X-ray structure determinations of complexes 2a and $\mathbf{5}$

	2a	5
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OAl}$	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{Al}$
FW	270.30	488.94
Crystal system	Orthorhombic	Triclinic
Space group	Pnma	$P \overline{1}$
$a(\mathrm{~A})$	9.3911(16)	9.6016(16)
$b(\AA)$	7.2864(19)	$9.7544(16)$
$c(\AA)$	22.101(6)	13.453(2)
$\left.\alpha{ }^{(}\right)$	90	83.340(2)
$\left.\beta{ }^{(}\right)$	90	85.521(3)
$\gamma\left({ }^{\circ}\right)$	90	83.632(3)
$V\left(\AA^{3}\right)$	1512.3(6)	1241.0(4)
Z	4	2
$D_{\text {calc. }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.187	1.308
$F(000)$	576	512
$\mu\left(\mathrm{mm}^{-1}\right)$	0.128	0.220
θ range for data collections (${ }^{\circ}$)	1.84 to 25	1.53 to 26.36
Number of reflections collected	7372	7161
Number of independent reflections ($R_{\text {int }}$)	1448 (0.0496)	4982 (0.0200)
Number of data/ restraints/parameters	1448/0/115	4982/0/311
Goodness-of-fit on F^{2}	1.150	1.025
Final R indices ${ }^{\text {a }}[I>2 \sigma(I)]$	$\begin{aligned} & R_{1}=0.0482 \\ & w R_{2}=0.1341 \end{aligned}$	$\begin{aligned} & R_{1}=0.0447 \\ & w R_{2}=0.1144 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0812 \\ & w R_{2}=0.1759 \end{aligned}$	$\begin{aligned} & R_{1}=0.0713 \\ & w R_{2}=0.1344 \end{aligned}$
Largest difference peak and hole $\left(\mathrm{e} \cdot \AA^{-3}\right.$)	0.248 and -0.336	0.185 and -0.214

filtered. The filtrate was concentrated to form colorless crystalline complex $\mathbf{2 a}(0.272 \mathrm{~g}, 55 \%)$.

The similar reaction of complex $5(0.17 \mathrm{~g}, 0.35 \mathrm{mmol})$ with an equiv of AlMe_{3} (2.3 M solution in hexane, $0.16 \mathrm{ml}, 0.35 \mathrm{mmol})$ gave colorless crystals $(0.086 \mathrm{~g})$ identified by NMR spectroscopy as a mixture of $\mathbf{2 a}$ and 7. The ratio of $\mathbf{2 a}$ to 7 is about 3.6:1.

3.11. X-ray crystallography

Single crystals of complexes $\mathbf{2 a}$ and 5 were mounted in Lindemann Capillaries under nitrogen. Diffraction data were collected on a Siemens CCD area-detector with graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). The structures were solved by direct methods using shelxs-97 [19] and refined against F^{2} by full-matrix least-squares using shelxl-97 [20]. Crystal data and experimental details of the structure determinations are listed in Table 1.

4. Supplementary materials

Crystallographic data for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre CCDC Nos. 266571 and 266572 for 2a and 5. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ UK (fax: +44 1223336 033; email: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgments

We thank the National Natural Science Foundation of China for financial support (project code 20272056) and professors H.-G. Wang and H.-B. Song of Nankai University for carrying out the X-ray structure determinations.

References

[1] (a) V.C. Gibson, S.K. Spitzmesser, Chem. Rev. 103 (2003) 283;
(b) M.P. Coles, R.F. Jordan, J. Am. Chem. Soc. 119 (1997) 8125.
[2] (a) Y.V. Kissin, Macromolecules 36 (2003) 7413;
(b) M.D. Skowronska-Ptasinska, R. Duchateau, R.A. van Santen, G.P.A. Yap, Organometallics 20 (2001) 3519;
(c) Y.V. Kissin, A.J. Brandolini, Macromolecules 36 (2003) 18;
(d) H. Schumann, S. Dechert, S. Schutte, J.-Y. Hyeon, M. Hummert, B.C. Wassermann, Organometallics 22 (2003) 1391; (e) A. Eisenhardt, B. Heuer, W. Kaminsky, K. Köhler, H. Schumann, Adv. Synth. Catal. 345 (2003) 1299;
(f) E.Y.-X. Chen, T.J. Marks, Chem. Rev. 100 (2000) 1391.
[3] (a) O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev. 104 (2004) 6147;
(b) D. Mecerreyes, R. Jérôme, P. Dubois, Adv. Polym. Sci. 147 (1999) 1.
[4] (a) B.T. Ko, C.C. Wu, C.C. Lin, Organometallics 19 (2000) 1864; (b) W. Baidossi, A. Rosenfeld, B.C. Wassermann, H. Schumann, J. Blum, Synthesis (1996) 1127;
(c) Y. Niwa, M. Shimizu, J. Am. Chem. Soc. 125 (2003) 3720;
(d) M. Shimizu, Y. Niwa, Tetrahedron Lett. 42 (2001) 2829.
[5] (a) D.A. Robson, L.H. Rees, P. Mountford, M. Schröder, Chem. Commun. (2000) 1269;
(b) Z. Yu, J.M. Wittbrodt, M.J. Heeg, H.B. Schlegel, C.H. Winter, J. Am. Chem. Soc. 122 (2000) 9338;
(c) C. Cui, S. Köpke, R. Herbst-Irmer, H.W. Roesky, M. Noltemeyer, H.-G. Schmidt, B. Wrackmeyer, J. Am. Chem. Soc. 123 (2001) 9091;
(d) W. Zheng, N.C. Mösch-Zanetti, T. Blunck, H.W. Roesky, M. Noltemeyer, H.-G. Schmidt, Organometallics 20 (2001) 3299.
[6] T.R. Younkin, E.F. Connor, J.I. Henderson, S.K. Friedrich, R.H. Grubbs, D.A. Bansleben, Science 287 (2000) 460.
[7] (a) J. Lewiński, I. Justyniak, J. Zachara, E. Tratkiewicz, Organometallics 22 (2003) 4151;
(b) Y.-L. Huang, B.-H. Huang, B.-T. Ko, C.-C. Lin, J. Chem. Soc., Dalton Trans. (2001) 1359;
(c) B.-H. Huang, T.-L. Yu, Y.-L. Huang, B.-T. Ko, C.-C. Lin, Inorg. Chem. 41 (2002) 2987;
(d) C. Lustig, N.W. Mitzel, Angew. Chem. Int. Ed. 40 (2001) 4390;
(e) N. Jaber, D. Gelman, H. Schumann, S. Dechert, J. Blum, Eur. J. Inorg. Chem. (2002) 1628;
(f) L.S. Baugh, J.A. Sissano, J. Polym. Sci., A, Polym. Chem. 40 (2002) 1633, and references therein.
[8] M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi, J. Am. Chem. Soc. 122 (2000) 5147.
[9] (a) C.-T. Chen, C.-A. Huang, B.-H. Huang, Dalton Trans. (2003) 3799;
(b) S. Dagorne, L. Lavanant, R. Welter, C. Chassenieux, P. Haquette, G. Jaouen, Organometallics 22 (2003) 3732;
(c) A. Bhaw-Luximon, D. Jhurry, N. Spassky, Polym. Bull. 44 (2000) 31;
(d) K. Majerska, A. Duda, J. Am. Chem. Soc. 126 (2004) 1026;
(e) P. Hormnirun, E.L. Marshall, V.C. Gibson, A.J.P. White, D.J. Williams, J. Am. Chem. Soc. 126 (2004) 2688.
[10] (a) P.A. Cameron, V.C. Gibson, C. Redshaw, J.A. Segal, M.D. Bruce, A.J.P. White, D.J. Williams, Chem. Commun. (1999) 1883;
(b) P.A. Cameron, V.C. Gibson, C. Redshaw, J.A. Segal, G.A. Solan, A.J.P. White, D.J. Williams, J. Chem. Soc., Dalton Trans. (2001) 1472.
[11] T. Mole, E.A. Jeffery, Organoaluminium Compounds, Elsevier Publishing Company, Amsterdam, 1972.
[12] S.J. Obrey, S.G. Bott, A.R. Barron, Organometallics 20 (2001) 5119.
[13] J. Lewiński, J. Zachara, K.B. Starowieyski, Z. Ochal, I. Justyniak, T. Kopeć, P. Stolarzewicz, M. Dranka, Organometallics 22 (2003) 3773.
[14] (a) R. Benn, A. Rufinska, Angew. Chem. Int. Ed. 25 (1986) 861; (b) R. Benn, A. Rufinska, H. Lehmkuhl, E. Janssen, C. Krüger, Angew. Chem. Int. Ed. 22 (1983) 779;
(c) R. Benn, E. Janssen, H. Lehmkuhl, A. Rufinska, J. Organomet. Chem. 333 (1987) 155;
(d) M.-D. Li, C.-C. Chang, M.Y. Chiang, S.-T. Liu, Inorg. Chem. 37 (1998) 1655;
(e) J. Lewiński, J. Zachara, B. Mańk, S. Pasynkiewicz, J. Organomet. Chem. 454 (1993) 5;
(f) L.-C. Liang, M.-H. Huang, C.-H. Hung, Inorg. Chem. 43 (2004) 2166.
[15] R.-C. Yu, C.-H. Hung, J.-H. Huang, H.-Y. Lee, J.-T. Chen, Inorg. Chem. 41 (2002) 6450.
[16] M.S. Hill, A.R. Hutchison, T.S. Keizer, S. Parkin, M.A. VanAelstyn, D.A. Atwood, J. Organomet. Chem. 628 (2001) 71.
[17] (a) V.C. Gibson, C. Redshaw, A.J.P. White, D.J. Williams, J. Organomet. Chem. 550 (1998) 453;
(b) D. Pappalardo, C. Tedesco, C. Pellecchia, Eur. J. Inorg. Chem. (2002) 621;
(c) M.P. Hogerheide, M. Wesseling, J.T.B.H. Jastrzebski, J. Boersma, H. Kooijman, A.L. Spek, G. van Koten, Organometallics 14 (1995) 4483.
[18] Z.-X. Wang, H.-L. Qin, Green Chem. 6 (2004) 90.
[19] G.M. Sheldrick, Acta Crystallogr., Sect. A 46 (1990) 467.
[20] G.M. Sheldrick, shelxl-97, Programs for Structure Refinement, Universität Göttingen, 1997.

[^0]: Corresponding author. Tel.: +86 551 3603043; fax: +86 551 3601592/3631760.

 E-mail address: zxwang@ustc.edu.cn (Z.-X. Wang).

